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Figure 1: Exponential reduction in areal size of a bit
for the last fifty years since the 1946 Eniac computer.

1 Planned Research

I propose to consider the feasibility of implement-
ing a quantum lattice-gas dynamics based on quan-
tum computing ideas and to explore the practicality
of building a quantum computer, a question first posed
by Richard Feynman over a decade ago [1].

It is likely, within our generation, nanometer scale
computing will prevail as a standard computing tech-
nology. Fiqure 1 is a log-linear plot of data for the
areal size of a bit over the last fifty years (from 18,000
bits in the 1946 Eniac computer to about 1011 in to-
day’s biggest parallel supercomputer). It is clear there
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has been an exponential reduction in bit size with
its linear dimension halving approximately every 18
months. It appears a bit’s size is heading towards
the atom’s size, and if the trend indicated in figure 1
continues, atomic densities will be achieved perhaps
within two decades from now.

There are several important issues in nanoscale
computing. While it may be possible to do classi-
cal computing at the nanoscale where bits are Boolean
and have a definite value of either 0 or 1 1, there exists
a more compelling possibility, recently termed quan-

tum computing, where spin- 1
2 quantum objects repre-

sent the smallest unit of information, the quantum bit
or “qubits”. The qubit can be in a superposition of the
Boolean states | 0〉 and | 1〉. If one measures the value
of the qubit, binary values are observed correspond-
ing to either the square of the probability amplitude
of it being in the ground state, |0〉, or the square of
the probability amplitude of it being in the excited
state, |1〉. Of course, the probability of these classical
outcomes add to unity: 〈0|0〉 + 〈1|1〉 = 1.

It is well known that lattice gases model kinetic
processes for a large number of particles in a fine-
grained parallel manner; in the macroscopic limit
Navier-Stokes hydrodynamics emerges. Furthermore,
lattice gases exhibit multiphase fluid behavior such as
liquid-gas phase separation by spinoidal decomposi-
tion [10, 9, 7]. I propose to explore a generalization of
the lattice gas idea. Consider the following quantum
lattice gas microscopic transport equation2

| ψ(xi + εei, t+ ε2)〉 =| ψ(xi, t)〉 + Ĵ | ψ(xi, t)〉, (1)

where the lattice directions are denoted by the vectors
ê. Require the evolution operator 1̂+Ĵ be unitary. The
wave function | ψ〉 is a vector comprised of qubits. In

1This kind of computing may best be termed atomic-scale

classical computing.
2I am using diffusive ordering where δt ∼ δx2 ∼ ε2.
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the case of one-dimensions treated here for simplicity,
there are two qubit per site, ψ1 and ψ2, corresponding
to the positive and negative directions respectively, i.e.
| ψ〉 = (ψ1, ψ2). Taylor expanding the L.H.S. of (1)
gives the associated partial differential equation, to
second order in ε,

Ĵ | ψ(x, t)〉 =

(

εC∂x +
ε2

2
C2∂2

x + ε2∂t

)

| ψ(x, t)〉.

(2)
C is a diagonal matrix whose components are those
of the lattice vectors of the discrete space (Cαβ

i =
δαβeαi). Substituting the wave amplitude

| ψ〉 =| ψ(0)〉 + ε | ψ(1)〉 + O(ε2), (3)

expanded in ε, into (2) and equating terms of similar
order in ε gives the following equations3

Ĵ | ψ(1)〉 = C∂x | ψ(0)〉 (4)

∂t | ψ
(0)〉 = −C∂x | ψ(1)〉 −

1

2
C2∂2

x | ψ(0)〉. (5)

(4) can be inverted to solve for the first order correc-
tion to wave function, | ψ(1)〉. Substituting this into
(5), a parabolic equation for | ψ(0)〉 emerges

∂t | ψ
(0)〉 = −C

(

Ĵ−1 +
1

2

)

C∂2
x | ψ(0)〉. (6)

Now choosing the collision operator to be

Ĵ = −
2

1 + h̄2

m2

(

1 i h̄
m

i h̄
m

1

)

, (7)

(6) becomes the Schrödinger equation of a nonrela-
tivistic quantum particle

ih̄∂tΨ = −
h̄2

2m
∂2

xΨ, (8)

where Ψ = ψ1 +ψ2. The “density” of qubits at a site,
ψ1 + ψ2, obeys the Schrödinger equation (8). There-
fore, it is possible to recover the Schrödinger equation
from a quantum lattice gas, in analogy to the well
known recovery of the Navier-Stokes equation from a
classical lattice gas. It is straightforward to general-
ize this approach to n-dimensions and to the many-
particle Schrödinger equation. This algorithm is nat-
urally suited for a quantum computer, and can be im-
plemented in terms of a few simple local unitary op-
erations on a lattice of quantum bits.

3At zeroth order the operator Ĵ does not affect | ψ(0)〉 since

this is the equilibrium state.

2 Relevancy

Quantum mechanical systems of many interacting
particles are notoriously difficult to simulate on clas-
sical computers. Even for systems of discrete spins,
each of which may have only two possible states, the
dimension of the Hilbert space of the entire system is
exponential in the number of particles present. Since
all first-principles methods of simulating such a sys-
tem must follow the dynamics of all the components
of the state vector in the full Hilbert space, they have
a computational complexity that is exponential in the
number of spins present.

In 1982 Feynman conjectured that it would be eas-
ier to simulate many-body quantum mechanical sys-
tems using other quantum mechanical systems, rather
than using classical computers. This conjecture gave
rise to the field of quantum computation. Until re-
cently there were no specific algorithms known for
implementing such a simulation in practice. In this
project, I will explore a very simple quantum com-
putational paradigm for the simulation of the many-
particle Schrödinger equation in n-dimensions. Be-
cause all operations in these algorithms are local,
they are easily implemented on parallel computers,
which are often optimized for local operations and
nearest-neighbor communication on a grid. However,
in spite of this direct and immediate possible applica-
tion, these ideas will assume their most powerful man-
ifestation on a quantum computer, where they will
make possible quantum many-body calculations that
would otherwise require geological time scales to com-
plete.

In either atomic-scale classical computing or quan-
tum computing, one is restricted to reversible algo-
rithms for reasons of avoiding heat production and
the unitarity of quantum evolution. With nanoscale
devices, heat dissipation is a fatal problem, one must
avoid producing heat at all costs. Reversible logic
achieves this. Since information is exactly preserved
in a reversible algorithm, the Gibbs entropy, S, is con-
stant throughout the course of the calculation (dS =
0), consequently since

dQ = TdS = 0, (9)

no heat is produced. Furthermore, since all dynamics
at the nanoscale is governed by the Schröedinger wave
equation, where the Hamiltonian, H , is hermitian, the
evolution operator

Û = e−iĤt (10)

is unitary, and hence its quantum evolution is invert-
ible. The consequence of this to computing is that the
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underlying quantum device itself would undergo re-
versible evolution. Conversely, for any reversible com-
putation, one can describe the algorithm by permuta-
tions on the state data, for which there corresponds
a unitary evolution (lattice gases are the prototypi-
cal example of this kind of algorithm). For any re-
versible algorithm chosen, the task is to map the com-
putational “Hamiltonian” of the algorithm on to the
physical Hamiltonian of the nanoscale device in ques-
tion. Since microscopic physics is reversible, micro-
scopic algorithms must be too. So a crucial issue in
this regard is finding what are some useful reversible
algorithms for physical modeling. Once these algo-
rithms are found, the question of actually construct-
ing a nanoscale device to implement these algorithms
is somewhat more reasonable and more worth answer-
ing.

Nanoscale computing ofters unprecented paral-
lelism. The notion of having information stored at
atomic scales allows us to contemplate densities so
high that any computation would necessarily have to
be local, involving only nearby neighbors, and conse-
quently would be ultimately fine-grained. So the issue
of parallelism here involves coming up with a reason-
able strategy of clocking such a large collection of bits.

Beyond this, in quantum computing, one tries to
use a superposition of states as a practical means of
parallel computing. This is termed quantum paral-

lelism. For example, Shor’s showed that factoring can
in principle be done exponentially faster on a “quan-
tum computer” than on a classical computer (the
problem is NP-complete) by superposing all poten-
tial factors in the quantum computer’s wave function
and choosing an appropriate unitary evolution where
wrong factors interfere destructively while correct fac-
tors interfere constructively [5]. In this way a mas-
sively parallel search is accomplished in the time a of
single evolution of the quantum computer. So quan-
tum computing relies on having interference of a col-
lection of qubits occurring in a controlled fashioned to
achieve unprecented parallelism not available in clas-
sical computing.

Qubits will likely be spin- 1
2 objects. For example,

two energy-level states in a solid-state quantum well
or perhaps the spin of an electron localized in a laser
controlled artificial quantum chain or in a long poly-
mer molecular. Light might be used to initialize the
spin states of the qubits (writing), and then after the
qubits have interfered in some computing cycle, they
might also be clocked by a sequence of light pulses;
light might then likewise be used to measure the result-
ing spin states of the qubits (reading) [2]. (This kind

of controlled light-and-matter interaction is well know
in nuclear-magnetic-resonance experiments where pi-
pulses are used to tip nuclear spins.) The most dif-
ficult issue for quantum computing is isolating the
qubits from the surrounding environment. Since inter-
ference effects are essential for the computation, any
coupling with the environment destroys such effects.
The tremendous difficulties of maintaining quantum
coherence remains an open issue that must be resolved
before a quantum computer could be built.

3 Researchers and Facilities

Research will be carried out in the DynamicsLab
computing facility at Phillips Laboratory/GPAA, 29
Randolph Road, Hanscom AFB, Massachusetts. The
DynamicsLab is a new center for advanced parallel
computing, comprised of researchers from the MIT,
Boston University, Los Alamos National Laboratory,
and Lawrence Livermore National Laboratory.

• J. Yepez, Physicist, PL/GPAA, Hanscom AFB

• B. Boghosian, Research Professor, Center for
Comp Sci, Boston U., PL/GPAA IPA

• X. Shan, Research Scientist, Los Alamos National
Laboratory, PL/GPAA IPA

On site resources include: two prototype massively
parallel computers, CAM-8, an SGI power challenge
array, several SGI workstations, several Sun worksta-
tions, and optical data libraries. Currently have ac-
counts on several parallel supercomputers: DoD’s 896-
node CM-5 at the Army High Performance Research
Computing Center, DoE’s 1024 CM-5 at Los Alamos
National Laboratory, and Phillips Laboratory’s 400-
node SP-2 at Maui.

4 Justification

I’ve been pioneering the area of new models of com-
putation for several years and have been leading a
new basic research initiative task 2304CP since 1993
supported by the Air Force Office of Scientific Re-
search, Mathematical and Computational Science Di-
rectorate, in complex computational fluid dynamics
using lattice-gas methods requiring ultra fine-grained
parallel computers [6, 8].

With Phillips Laboratory SBIR contracts, two de-
signs for a billion site massively parallel lattice-gas
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Figure 2: The PL/GPAA lattice gas machine CAM-
8, eight module prototype, can evolve a D-dimensional
cellular space with 128 million sites where each site has
16 bits of data with a site update rate of 200 million
per second. Designed at the MIT Lab for Comp Sci.

computer have been completed. Currently the facil-
ity has two working prototypes of a lattice-gas ma-
chine, the CAM-8, one with 32 million sites and the
other with 128 million sites [4, 3]. The CAM-8 ma-
chine constitutes a significant improvement in our un-
derstanding of how to efficiently and flexibly model
and analyze large-scale discrete systems. The CAM-
8 is a mesh-network multiprocessor optimized for the
large-scale simulation of lattice gas models. A uni-
form n-dimensional space is divided up evenly among
a 3-dimensional array of processing nodes. Taking ad-
vantage of the uniformity and predictability of lattice
gas computations, all memory accesses and commu-
nication events are optimally ordered, pipelined and
synchronized between processors.

Hanscom Field, Masschusetts, in the Con-
cord/Lexington suburbs just our side the Boston area
is an ideal location because of its proximity to the local
universities and laboratories: MIT, Boston University,
Lincoln Laboratory, and many industrial corporations
involved in state-of-the-art computing architectures.

5 Programmatics

The proposed research project will begin in the be-
ginning of the fiscal year 1997.

Funding FY97 FY98 FY99 FY00 FY01

Totals 150K 150K 150K 150K 150K
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